首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   2篇
化学   133篇
力学   60篇
数学   13篇
物理学   20篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   12篇
  2007年   5篇
  2006年   13篇
  2005年   13篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   11篇
  2000年   14篇
  1999年   10篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有226条查询结果,搜索用时 31 毫秒
91.
First-principles molecular dynamics has been used to investigate the structural, vibrational, and energetic properties of formic acid, formic acid-formate anion dimers, and liquid formic acid in a periodically repeated box with 32 formic acid molecules. We found that in liquid formic acid the hydrogen-bonded clusters mainly consist of linear branching chains. From our simulation, we got good agreement with the available structural and dynamical data. We also studied the proton transfer in the cis-formic acid-formate anion dimer, and we showed that this proton transfer does not have any potential barrier. The hydrogen bonding statistics as well as the mean lifetime of the hydrogen bonds are analyzed.  相似文献   
92.
Applying a recently developed three dimensional SIMS imaging technique major differences in the distribution of trace elements in ultra high purity Mo and W have been found. In the electron beam melted material severe grain boundary segregation of trace elements have occurred whereas in the hot pressed material trace elements have been present as precipitates with a size of 5–15 m. Guided by the results of the 3D-SIMS images and the advantages of the sintering process a material with homogeneous distribution of trace elements has been developed and characterised. To test the applicability for the microelectronics industry, sputtering targets have been manufactured out of this new material and layers with a thickness of 350 nm have been sputterdeposited on silicon. The quality of these layers, with respect to particle emission and the distribution of trace elements, was evaluated by EPMA and 3D-SIMS imaging. Further improvement of the sintering process led to a material with a completely homogeneous distribution of C, H, N, O and S to minimise the outgassing and diffusion of impurities.Abbreviations BSE Back scattered electron - EPMA Electron probe micro analysis - GAAS Graphite furnace atomic absorption spectrometry - GDMS Glow discharge mass spectrometry - ICP-AES Inductively coupled plasma atomic emission spectrometry - ICP-MS Inductively coupled plasma mass spectrometry - SIMS Secondary ion mass spectrometry - ULSI Ultra large scale integration  相似文献   
93.
In the present study an evolution equation for the Cauchy stress tensor is proposed for an isotropic elasto-visco-plastic continuum. The proposed stress model takes effects of elasticity, viscosity and plasticity of the material simultaneously into account. It is ascribed with some scalar coefficient functions and, in particular, with an unspecified tensor-valued function N, which is handled as an independent constitutive quantity. It is demonstrated that by varying the values and the specific functional forms of these coefficients and N, different known models in non-Newtonian rheology can be reproduced. A thermodynamic analysis, based on the Müller–Liu entropy principle, is performed. The results show that these coefficients and N are not allowed to vary arbitrarily, but should satisfy certain restrictions. Simple postulates are made to further simplify the deduced general results of the thermodynamic analysis. They yield justification and thermodynamic consistency of the existing models for a class of materials embracing thermoelasticity, hypoelasticity and in particular hypoplasticity, of which the thermodynamic foundation is established successively for the first time in literature. The study points at the wide applicability and practical usefulness of the present model in different fields from non-Newtonian fluid to solid mechanics. In this paper the thermodynamic analysis of the proposed evolution-type stress model is discussed, its applications are reported later.   相似文献   
94.
Aminoglycosides containing a 2,3‐trans carbamate group easily undergo anomerization from the 1,2‐trans glycoside to the 1,2‐cis isomer under mild acidic conditions. The N‐substituent of the carbamate has a significant effect on the anomerization reaction; in particular, an N‐acetyl group facilitated rapid and complete α‐anomerization. The differences in reactivity due to the various N‐substituents were supported by the results of DFT calculations; the orientation of the acetyl carbonyl group close to the anomeric position was found to contribute significantly to the directing of the anomerization reaction. By exploiting this reaction, oligoaminoglycosides with multiple 1,2‐cis glycosidic bonds were generated from 1,2‐trans glycosides in a one‐step process.  相似文献   
95.
Preventing ice growth on infrastructure, vehicles, and appliances remains a significant engineering challenge. Damage caused by ice growth on these installations can be expensive to repair, and their failure can be dangerous. Materials such as cross-linked polymer networks make effective anti-ice coatings and can prevent ice growth: reducing the cost of infrastructure repairs and limiting downtime. A link between cross-link density and ice adhesion has been demonstrated, such that lower cross-link density materials tend toward lower ice adhesion. Here we describe a method of lowering cross-link density by incorporating the covalently bound comonomers methyl methacrylate, lauryl methacrylate, and styrene into UV-cured PDMS-based polymer networks. Cross-link density, hardness, surface roughness, and ice adhesion on these materials are tested, showing the influence of comonomer proportions on their properties. Durability is found to increase with the addition of 5, 10, and 25 wt% comonomer, with little to no effect on ice adhesion until 25 wt%, where increases in ice adhesion are observed. Coatings show promisingly low ice adhesion of ~50 kPa, maintaining this low adhesion for up to 50 deicing cycles.  相似文献   
96.
97.
 Silicon- and aluminium oxynitride films have gained attention because of their interesting properties in various fields of technology. The specific properties strongly depend on the concentration of oxygen and nitrogen in the films. For the quantitative analysis of homogeneous silicon- and aluminium oxynitride films, EPMA has been proven a very reliable and precise method of analysis. In order to characterise films with graded composition or interface effects between the film and the substrate it is necessary to use sputter depth profiling techniques such as SIMS, hf-SNMS, AES, or hf-GD-OES. Unfortunately, stoichiometric silicon- and aluminium oxynitride films are insulating and therefore charge compensation has to be applied. For the quantification it was necessary to prepare calibration samples which have been analysed by different bulk analytical techniques such as NRA, RBS and EPMA. With these calibration samples, sensitivity factors have been determined and the functional dependence of the sensitivity factors on the composition has been derived. The advantages and disadvantages of the different sputtering techniques and the applicability of the obtained sensitivity functions for the quantitative depth profiling of silicon- and aluminium oxynitride films are discussed.  相似文献   
98.
Summary The principle of virtual power is used to derive the equilibrium field equations of a porous solid saturated with a fluid, including second density-gradient effects; the intention is the elucidation and extension of the effective stress principle of Terzaghi and Fillunger. In the context of a first density-gradient theory for a saturated solid we interpret the porewater pressure as a Lagrange multiplier in the expression for the deformation energy, assuring that the saturation constraint is verified. We prove that this saturation pressure is distributed among the constituents according to their respective volume fraction (Delesse law) only if they are both true density-preserving. We generalize the Delesse law to the case of compressible constituents. If a material-dependent effective stress contribution is to arise, it is, in general, nonvanishing simultaneously in both the solid and fluid constituents. Moreover, saturation pressure, effective stresses and compressibility constitutive equations determine the exchange volume forces. In a theoretical formulation without non-isotropic strain measures, second density-gradient effects must be incorporated, not only to accommodate for the equilibrium-solid-shear stress and the interaction among neighboring solid-matrix pores, but also to describe internal capillarity effects. The earlier are accounted for by a dependence of the thermodynamic energy upon the density-gradient of the solid, while the latter derives from a mixed density-gradient dependence. Examples illustrate the necessity of these higher gradient effects for properly posed boundary value problems describing the mechanical behaviour of the disturbed rock zone surrounding salt caverns. In particular, we show that solid second-gradient strains allow for the definition of the concept of static permeability, which is distinct from the dynamic Darcy permeability. Received 1 February 1999; accepted for publication 9 March 1999  相似文献   
99.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
100.
We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号